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ABSTRACT 
In this paper, integration of the power series method and the Padé approximants (PS-Padé) is utilized to study 

buckling and pull-in instability of multi-walled carbon nanotube (MWCNT) cantilevers in the vicinity of 

graphite sheets due to intermolecular forces. A hybrid nano-scale continuum model based on the Lennard–Jones 

potential is used to simulate the Van der Waals forces and evaluate the buckling of MWCNT. A closed form 

power series, based on the symbolic power series polynomials, is utilized to obtain a series solution for the 

governing boundary value differential equation of the nanotube. In order to handle the boundary conditions and 

increasing the accuracy of solution, the symbolic power series are transformed into Padé approximants. The 

governing differential equation is also solved numerically using the finite difference method. The PS-Padé 

results are compared with the numerical results and other methods reported in literature. The results obtained by 

using the PS-Padé approach correspond very well with the numerical results. Furthermore, the detachment length 

and the minimum gap between MWCNT and the graphite plane as important parameters of engineering designs 

are computed. It is found that for a fixed gap, the detachment length of a MWCNT can be increased with the 

increase of the radius, wall thickness and the effective Young modulus of the MWCNT. 

Keywords - Cantilever, MWCNT, Padé, Pull-in instability, Symbolic power series. 

 

I. Introduction 
Multi-walled Carbon Nanotubes (MWCNTs) 

are types of nano-materials with outstanding 

mechanical properties. Nowadays, MWCNTs have 

attracted considerable attention because of their 

unique mechanical and chemical properties. These 

novel materials can be visualized in the form of 

nano-scale concentric cylinders rolled up by 

graphene sheets. There are numerous reports on the 

fabrication of single-walled carbon nanotubes 

(SWCNT) and MWCNT probes [1]-[3]. MWCNTs 

can be synthesized by different techniques, including 

laccase-mediator [4], situ oxidative polymerization 

method [5]-[7]. Single-walled and multi-walled 

carbon nanotubes have been utilized as 

electrochemical sensors [8], catalysts [9], [10], 

structures [11], and Atomic force microscopes 

(AFM) [12]. Electrically induced static and dynamic 

mechanical buckling and pull-in instability of 

MWCNT cantilevers have many applications, such 

as nanotube based electromechanical system 

(NEMS) switches [12]-[14].  

     Consider a typical MWCNT cantilever 

probe/switch suspended above a graphite surface  

 

 

with a small gap between them. When the size of the 

gap decreases to nanometers, the Van der Waals 

interaction buckles the MWCNT to the substrate. In 

a recent piece of work [15], the authors utilized a 

hybrid continuum model to consider the molecular 

force-induced buckling of the cantilever freestanding 

MWCNT probes/actuators suspended over graphite 

sheets. They carried out the governing equation of 

the deflection of MWCNT cantilever 

probes/actuators in the vicinity of thin and thick 

graphite layers. The governing equation of the 

hybrid distributed model leads to a fourth-order 

nonlinear, ordinary differential equation. Because of 

the nonlinearity of the governing equation of the 

distributed model, an exact solution does not yet 

exist. 

     Reference [15] used the Green’s function method 

with a simple second order polynomial as the shape 

function to obtain deflection and pull-in parameters 

of MWCNT cantilevers. They have also used the 

Adomian decomposition method (ADM) to obtain 

pull-in instability of MWCNT cantilevers. However, 

the accuracy of the results of the Green’s method 

and the Adomian decomposition method [15] for 

calculating deflection of MWCNT cantilevers near 
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the pull-in instability is not perfect. Reference [16] 

examined a monotone positive solution to obtain a 

resolution for the buckling of MWCNTs. The 

monotone solution is a comparatively accurate 

solution for low values of intermolecular forces, but 

it fails to evaluate the pull-in instability of MWCNT 

cantilevers. 

     The combination of any series solutions with the 

Padé approximants provides a powerful tool for 

increasing the accuracy of boundary value problems 

[17]-[19]. Hence, the accuracy of the series methods 

can be enhanced by using Padé approximants.  

     In this study, in order to obtain an accurate 

analytical solution for pull-in instability of 

MWCNTs in the vicinity of graphite sheets, 

integration of symbolic power series with Padé 

approximants (PS-Padé) is used as a new approach 

to study the buckling and pull-in instability of 

MWCNT cantilever actuators. A fair comparison is 

made between the method presented and numerical 

results as well as between the Adomian 

decomposition method and monotone solution 

reported in literature. 

 

II. Mathematical Model 
Fig. 1 shows a physical schematic of a typical 

MWCNT cantilever near a surface consisting of N 

graphene layers, with interlayer distance d. The 

length of MWCNT is L, the mean radius value is RW, 

the number of walls of nanotube is NW, and the gap 

between MWCNT and the graphite surface is D. 

 
Fig. 1 Schematic of a MWCNT cantilever in the 

vicinity of graphite sheets 

 

     Based on continuum mechanics, a MWCNT is 

modeled by concentric cylindrical tubes. E is the 

Young’s modulus of MWCNT which typically is in 

the range of 0.9 to 1.2 TPa, and the cross-sectional 

moment of inertia I is equal to π (Ro
4
 - Ri

4
)/4 [15]. 

By neglecting the effect of large displacement (finite 

kinematics) for L/De>10 and applying the Euler 

theory [20], [21], the governing equation of a 

MWCNT cantilever can be written as the following 

boundary value ordinary differential equation [15]: 

 UDq
dX

Ud
IE vdWeff 

4

4

                   (1-a) 

     subject to the following geometrical boundary 

conditions at fixed end: 

    000 
dX

dU
U                               (1-b) 

     and, natural boundary conditions at free end, as 

follows: 

    0
3

3

2

2

 L
dX

Ud
L

dX

Ud                       (1-c) 

     where X is the position along MWCNT measured 

from the bending side, U is the deflection of 

MWCNT cantilever and qWdv is the intermolecular 

force per unit length of MWCNT. According to the 

work of [15], qWdv can be represented as follows: 
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     In (2), σ≈38nm
-2

 [22] is the graphene surface 

density and C6 = 15.2 eV Å
6
 is the attractive 

constants for the carbon–carbon interaction [23]. By 

substituting (2) in (1) and using the following 

substitutions: 
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     and: 
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     the dimensionless form of (1) can be obtained as 

follows: 

  n

n

xu

f

dx

ud




1
4

4

                                   (4-a) 

   0 0 , 0,u u at x        (4-b) 

   1 1 0, 1u u at x             (4-c) 

     In the following text, n = 4 and n = 5 correspond 

to the large number and small number of graphene 

layers, accordingly. In the equations, prime denotes 

differentiation with respect to non-dimensional 

length of x. 

 

III. Analytical Solution 
Equation (4-a) subject to (4-b) and (4-c) can be 

solved using a symbolic power series enhanced with 

Padé approximants. The basic idea of the symbolic 

power series method and Padé approximants are 

explained in the works of [17], [18] and also [24], 

[25].  

III.1 Symbolic Power Series Method 

Based on the symbolic power series method, the 

fourth-order differential equation of (4-a) can be 

written as a system of four first order differential 

equation, as follows: 
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     subject to the following boundary conditions: 

   

   

1 2

3 4

0 0, 0 0,

0 , 0

u u

u P u Q

 

 
                    (6) 

     and to the constraints which come from (4-c): 

   3 41 0, 0 0u u  ,                    (7) 

     Here, P and Q are constants which later will be 

computed from the boundary conditions, (4-c) or (7). 

Based on the method of symbolic power series 

introduced by [17], [18], the solution procedure is 

started as follows: 
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                                           (8) 

     Substituting (8) in (5) and neglecting higher order 

terms yields: 

1
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e
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                                                 (9) 

     Solving (9) for e1 to e4 and substituting the 

obtained values into (8) and considering a higher 

term gives the first approximation of the solution as: 
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                            (10) 

     Again, substituting (10) in (5) and neglecting 

higher order terms yields: 

1
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     Substituting the new values of e1 to e4 into (10) 

and considering a higher term results in: 
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     By substituting e1 to e4 in (5) and repeating this 

procedure, the following power series for u1 is 

obtained after eight iterations: 

 
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 

(13) 

     Continuing this procedure results in a symbolic 

power series with higher terms. Here, undetermined 

coefficients, P and Q, correspond to the second and 

third derivatives of beam deflection with respect to x 

at x = 0, accordingly. These coefficients can be 

evaluated using natural boundary conditions at free 

end (i.e. u2 (1) = 0 and u3 (1) = 0). 

     The combination of any series solutions with the 

Padé approximation provides a powerful tool for 

handling initial or boundary value problems on 

infinite or semi-infinite domains [24]-[26]. In order 

to increase the accuracy of solution, the power series 

in the symbolic form and before computation of the 

unknown values of P and Q, can be converted to 

Padé approximation. 
III.2 Padé Approximants 

Any power series can be represented as a function f 

(x), in the form of: 

  





0i

i

ixaxf
                                      (14) 

     where, the expansion of (14) is the fundamental 

starting point of any analysis using Padé 

approximants. The objective of the Padé 

approximants is to seek a rational function for the 

series. The Padé approximants converge on the 

entire real axis if the series solution is free of 

singularities on the real axis [24]. A Padé 

approximant is a rational fraction which provides us 

with more stable expression than the original power 

series. The notation for such a Padé approximant can 

be defined as per [26]: 
2
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     Both sides of (14) are multiplied by the 

denominator of the right-hand side of (15): 
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     By comparing the coefficients of both sides of 

(16), one can find that: 
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     M and L are the degrees of numerator and 

denominator in the Padé series, respectively. By 

solving the linear equation, (18), the qk (k=1,…,L) is 

determined. After that, by substituting qk in (17), pl 

(l=0,…,M) will be determined. For instance, by 

following this procedure, the Padé series of (13) 

with the size of {2, 2} for u1, can be obtained as 

follows. 

     From (18) with L=2 and M=2: 
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     Solving for q1 and q2: 
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     From (17) with M=2: 
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     After substituting the obtained coefficients and 

simplification, the Padé series of u1 with the size of 

{2, 2} is as follows: 

 
3 2

1
2 2 2

3

1 12
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n

P x
u x

P QPx f P Q x
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 
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     (22) 

     If the order of Padé approximation increases, the 

accuracy of the solution increases [25], [26].  

 

IV. Results and Discussion 
In order to verify the convergence of Padé 

approximants, deflection of a typical nanotube-

actuator, which is used in the work of [15], is 

computed analytically using the symbolic power 

series method. Then the power series are converted 

to Padé approximants. The solution results are 

compared with the numerical results as well as the 

monotone method [16], the Green’s method and 

Adomian decomposition method [15]. Numerical 

results are obtained using the finite difference 

method based on collocation points and Newton’s 

method [27], [28]. A highly accurate solution with a 

relative tolerance of 10
-8

 is achieved. Table 1 and 

Table 2 compare MWCNT cantilever tip deflection 

(utip), computed using different terms of symbolic 

power series and different sizes of Padé 

approximants, respectively. These tables ensure the 

convergence and accuracy of the power series and 

Padé approximants. Table 2 reveals that higher 

accuracy can be obtained by evaluating more terms 

of the Padé approximants. 

 

 

     The relative error is computed from: 

Numerical

NumericalAnalytical

u

uu
Error


                        (23) 

     where, uAnalytical and uNumerical are the MWCNT 

cantilever tip deflection, computed from the 

analytical method (i.e. PS or PS-Padé) and the tip 

deflection computed using numerical method, 

respectively. The Error represents the relative error. 

Table 1 

The Evaluated Tip Deflection of a Typical 

MWCNT Cantilever Using Different 

Terms of PS Method for fn=0.5 

Series 

Size 

Tip 
Deflection 

PS, n=4 

Error 

n=4 

Tip 
Deflection 

PS, n=5 

Error 

n=5 

4 0.06250 1.903E-01 0.06250 2.491E-01 

5 0.06250 1.903E-01 0.06250 2.491E-01 
6 0.08657 1.215E-01 0.09533 1.453E-01 

7 0.07215 6.525E-02 0.07516 9.700E-02 
8 0.08228 6.592E-02 0.09350 1.233E-01 

9 0.07396 4.190E-02 0.07737 7.046E-02 

10 0.07946 2.945E-02 0.08842 6.228E-02 
11 0.07564 2.015E-02 0.07983 4.087E-02 

12 0.07833 1.476E-02 0.08613 3.479E-02 

13 0.07646 9.511E-03 0.08137 2.236E-02 
14 0.07772 6.816E-03 0.08475 1.826E-02 

15 0.07684 4.494E-03 0.08223 1.211E-02 

16 0.07743 3.087E-03 0.08400 9.263E-03 
Numerical 0.077192 0.083233676 

Table 2 

The Evaluated Tip Deflection of a Typical 

MWCNT Cantilever Using Different 

Terms of PS-Padé for fn=0.5 

Padé  

Size 

Tip 
Deflection 

PS-Padé, 

(n=4) 

Error 

(n=4) 

Tip 
Deflection 

PS-Padé, 

(n=5) 

Error 

(n=5) 

{2,2} 0.07368 4.544E-02 0.07405 1.103E-01 
{3,3} 0.07525 2.519E-02 0.08009 3.777E-02 

{4,4] 0.07724 5.716E-04 0.08344 2.449E-03 

{5,5} 0.07710 1.148E-03 0.08353 3.504E-03 
{6,6} 0.07719 1.795E-05 0.08323 3.415E-05 

{7,7} 0.07719 2.054E-06 0.08323 4.200E-06 
{8,8} 0.07719 9.067E-07 0.08324 2.537E-05 

{9,9} 0.07719 1.460E-08 0.08323 5.240E-08 

Numerical 0.0771924 0.0832336 

 

     The results in Table 2 show the relative error 

between analytical and numerical results is less than 

0.0034% by selecting PS- Padé size of {6,6}. It is 

worth noticing that the Padé approximants with size 

{6,6} are obtained from 15 terms of power series 

(i.e. O(x
16

)). Comparing this error with the same 

series size of the PS method (i.e. 15 terms and 

relative error of 1.2%), shows the PS- Padé method 

could compute deflection of MWCNT cantilever 

with more accuracy than the PS method. The results 

of PS- Padé with size of {6, 6} with 0.0034% error 

are very similar to the numerical results. Therefore, 

the Padé size of {6, 6} is selected, for convenience. 

IV.1 Instability Study 

In order to study pull-in instability of multi-wall 

carbon nanotube cantilevers, (4) is solved 



Jalal Alsarraf et al. Int. Journal of Engineering Research and Applications                                   www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 12( Part 1), December 2014, pp.22-28 

 www.ijera.com                                                                                                                               26 | P a g e  

numerically simulated and the results are compared 

with the results of the PS-Padé method. The results 

show that for fn greater than critical value of 

intermolecular force (f 
*
), a numerical solution does 

not exist and the MWCNT collapses on to the sheets. 

The pull-in value of MWCNT-graphite attraction 

and the MWCNT pull-in tip deflection can also be 

evaluated using the PS-Padé technique by setting 

du(1)/dfn→∞ in the solution. 

     The relationship between fn and utip are presented 

in Figs. 2 and 3 for large and small numbers of 

graphene layers. Fig. 3 depicts the non-dimensional 

tip deflection of MWCNT which it increases from 

zero to pull-in instability as fn raises from zero to f 
*
n. 

Table 3 compares the obtained values of f 
*

n using 

different methods for large and small numbers of 

graphene layers. When intermolecular attraction 

exceeds the critical value of f 
*

n, no solution exists 

and the instability occurs. 

 
Fig. 2 Relation between fn and MWCNT cantilever tip 

deflection in the vicinity of large number of graphene 

layers (n=4) 

 
Fig. 3 Relation between fn and MWCNT cantilever tip 

deflection in the vicinity of small number of graphene 

layers (n=5) 

 

 

Table 3 

Comparison of f 
*

n obtained by different methods 

Model f *n  (n=4) 
error 

(n=4) 

f *
n 

(n=5) 

error 

(n=5) 

Numerical 

Solution 
0.939 - 0.769 - 

Monotone - - - - 
Green’s Function 1.025 9.2 0.841 9.4 

Adomian method 0.814 13.3 0.661 14 

PS 15 terms of 
series 

0.810 13.7 0.670 12.9 

PS Padé {6,6} 0.939 0 0.769 0 

 

     The results in Figs. 2 and 3 and Table 3 reveal 

that the PS-Padé method is more accurate than other 

methods in comparison with the numerical results. 

The centerline deflection of a typical MWCNT 

under intermolecular force for a large number of 

graphene layers and a small number of graphene 

layers are shown in Fig. 4 and Fig. 5, respectively. 

 
Fig. 4 Center line buckling of MWCNT for different 

values of fn when n=4 

 
Fig. 5 Center line buckling of MWCNT for different 

values of fn when n=5 

 

     These figures compare the PS-Padé results with 

the numerical results as well as with Green’s 

function method and the Adomian method [15]. The 

obtained PS-Padé solution at the onset of pull-in 
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instability for the large number of graphene layers 

(i.e. n=4) is as follows: 

 
 

 

2 3 4 5 6

2 3 4 5 6

5322605345000x +1658444884000x -2348055234000x +69078875300x +290980676200x

10901369930000+9353512630000x-571657749500x -920411794500x +25098037920x +16516697530x +4129243874x
u x 

                                                                              (24) 

     The PS-Padé solution at the onset of instability 

for the small number of graphene layers is: 

 
 

 

2 3 4 5 6

2 3 4 5 6

4449476518000x +1100463496000x -1906546258000x +151168135800x +208062912800x

10976849700000+8699010750000x-828753282000x -766502257000x +43693697980x +18891227440x +4867875469x
u x 

(25) 

     When the gap between the plane and the 

suspended nanotube is small enough, the nanotube 

may collapse on to the graphite sheets without 

applying voltage due to the intermolecular 

attractions. The stable length is an important 

parameter for design of nano-switches or AFM 

probes and some other engineering applications 

[12]-[14]. By substituting the obtained value of f 
*

n 

at the onset of instability in definition of fn (i.e. (3-

b)), then solving for corresponding minimum gap 

(Dmin) and detachment length (Lmax) of freestanding 

MWCNT, the following relations are obtained: 

 



















5
2192.0

4
939.0

4
2

6

62

4
2

6

52

max

nfor
NNC

NdDEtR

nfor
NC

DdEtR

L

W

W

W

W




          (26) 



















5
2

201.5

4
065.1

6
2

42

6

5
2

42

6

max

nfor
Nd

EtR

LNNC

nfor
dEtR

LNC

D

W

W

W

W




          (27) 

     Equation (26) shows the detachment length of a 

MWCNT would increase with an increase of the 

radius, wall thickness or effective Young modulus of 

the MWCNT. 

 

V. Conclusions 
A mathematical model based on a nano-scale 

continuum model and the Lennard–Jones potential is 

used to study buckling of MWCNT cantilevers near 

the graphite sheets. The governing equation leads to 

a fourth-order ordinary differential equation. Then, 

integration of the Adomian decomposition method 

and the Padé approximants is used as a new accurate 

technique to obtain a solution for buckling of 

MWCNT cantilevers. The ADM-Padé solution is 

compared with the numerical method, Green’s 

function, the Adomian solution and a symbolic 

power series in figures and tables. Comparison 

between the Adomian results and ADM-Padé results 

show that Padé approximants enhanced the 

convergence of Adomian decomposition 

polynomials to handling the governing boundary 

value problem near the pull-in area. Finally, by using 

the ADM-Padé technique, the critical value of Van 

der Waals attraction (f 
*

n) and detachment length of 

MWCNT as basic parameters for design and 

selecting components of nano-electro mechanical 

systems has been determined. 
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